Effects of a Restored Side Channel on the Aquatic Food Web in the Lower Yuba River cbec

Mitch Gladding, Mollie Ogaz, Avery Scherer, Philip Colombano, Kirsten Sellheim

BACKGROUND

- Historic mining has decreased juvenile salmonid rearing habitat
- Hallwood Side Channel and Floodplain Restoration Project was implemented to improve rearing conditions for juvenile fall and springrun Chinook salmon and California Central Valley Steelhead
- Converted deep backwater to side channel habitat
- Macroinvertebrates are the main prey items for juvenile salmonids, and are crucial to their growth

METHODS

- Identified and enumerated stomach contents of sacrificed juvenile Chinook salmon
- Took drift macroinvertebrate samples

Looking Ahead

- Do invertebrate density/taxonomic composition fluctuate seasonally?
- Investigate growth rates and rearing behavior in the project site
- Explore other sampling methods for determining available prey assemblages

Acknowledgements Special thanks to South Yuba River Citizen's League, cbec eco-engineering, Teichert Aggregates, and Cramer Fish Sciences field staff. This work was funded by U.S. Fish and Wildlife Service (AFRP/CVPIA), Yuba Water Agency, California Natural Resources Agency (Prop 68) and Wildlife Conservation Board (Prop 1).

Control vs. Project in 2023

2023 Fish Stomach Contents

Available prey diversity and prey consumption by juvenile Chinook salmon increased over time in the restored side channel